

On the Longitudinal and Flexural Waves Interaction with Thin Adhesive Joint Connections

Kayc W. Lopes^{1,*}, Camila G. Gonsalez-Bueno¹, Daniel J. Inman², Douglas D. Bueno³

São Paulo State University, School of Engineering, Departments of ¹Mechanical Engineering and ³Mathematics, Ilha Solteira, SP, Brazil ²University of Michigan, College of Engineering, Department of Aerospace Engineering, Ann Arbor, MI, United States of America

*Email : kayc.lopes@unesp.br

Introduction: Structural Health Monitoring and Joint Connections

Discussion/Results

- For s_N equal to 10³, 70 and 1 GPa.mm⁻¹ and $s_T = 10^3$ GPa.mm⁻¹

- For s_T equal to 10³, 70 and 1 GPa.mm⁻¹ and $s_N = 10^3$ GPa.mm⁻¹

Conclusions

Longitudinal and flexural waves can be used to monitor thin adhesive joint connections. The longitudinal wave only depends on the stiffness s_N . The flexural wave is more sensitive to changes in the s_N and can be also used to evaluate s_T . The results contribute to monitoring thin adhesive joint connections based on wave propagation.

